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The nonlinear dynamics of a classical photon pulse in a cavity-QED system is investigated theoretically. It
is shown that this system can work as a single-photon filter, which drastically suppresses the multiple-photon
probability of the output. The output photon statistics is sensitive to the input pulse length. A suitable choice of
pulse length produces a photon pulse with the single-photon probability of 0.32, while the multiple-photon
probability is suppressed to 0.01.
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I. INTRODUCTION

Single photons are regarded as a promising candidate for
qubits in quantum information processing, because photons
can maintain quantum coherence for a long time. Therefore,
extensive efforts have been made in generating and detecting
single photons, and remarkable improvements have been re-
ported in this field �1–7�. However, the generation of single
photons on demand is still a difficult experimental task, and
attenuated laser pulses �weak classical pulses� are used as a
substitute for single photons in quantum key distribution
�8–12�. A problem in using classical pulses is that pulses
containing multiple photons may be abused by eavesdrop-
pers �8–10�. In order to suppress the multiple-photon prob-
ability, a highly attenuated pulse must be used, in which the
single-photon probability is also suppressed. For example, in
order to suppress the multiple-photon probability to less than
0.01, the single-photon probability must be less than 0.14,
considering Poissonian photon statistics of classical pulses.
However, for efficient information processing, a pulse with a
larger single-photon probability is greatly desired.

Photon statistics can be controlled by utilizing nonlinear
optical effects. In particular, for the purpose of suppressing
the multiple-photon probability, the photon blockade effect is
promising �13–17�. In systems showing the photon blockade
effect, excitation by a first photon blocks absorption of an-
other photon while the system is excited. Therefore, it is
natural to expect that when a classical pulse with a short
coherence length is input, the photon blockade mechanism
would filter out the multiple-photon component in the output.
From this perspective, we clarify in this study how a classi-
cal pulse is transformed after transmission through a photon
blockade system, based on a rigorous multimode analysis
�18–21�. It is shown that using a weak classical pulse and a
photon blockade system, a photon pulse can be generated
having the single-photon probability of 0.32 while the
multiple-photon probability is suppressed to 0.01. Namely, a
photon blockade system is shown to work as a single-photon
filter, which can substantially improve the efficiency of in-
formation processing.

II. SYSTEM

A. Hamiltonian

As the simplest photon blockade system, we consider in
this study a two-level atom placed inside a two-sided cavity,
as illustrated in Fig. 1. Setting �=c=1, taking the atomic
resonance as the origin of the energy, and taking the dissipa-
tionless limit ��→0� for simplicity, the Hamiltonian of the
whole system including the external photon field is given by

H = g��†c + c†�� +� dk�kak
†ak + ��/2��c†ak + ak

†c��

+� dk�kbk
†bk + ��/2��c†bk + bk

†c�� , �1�

where g and � represent the vacuum Rabi frequency and the
cavity decay rate, respectively. �The escape rates of a cavity
photon into the left- and right-hand sides are identical.� �
and c denote the annihilation operators for the atomic exci-
tation and the cavity photon, respectively, and ak and bk de-
note the annihilation operators for the external photon mode
with energy k, extending in the left- and right-hand sides of
the cavity, respectively. c, ak, and bk are the bosonic opera-
tors satisfying �c ,c†�=1 and �ak ,ak�

† �= �bk ,bk�
† �=��k−k��,

whereas � is the Pauli operator satisfying �� ,�†�=1−2�†�.
The real-space representation of ak, denoted hereafter by ãr,
is given by
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FIG. 1. Schematic illustration of the situation considered in this

study. A classical pulse is input from the left-hand side of a two-
sided cavity containing a two-level atom. Photons emitted in the
reflection direction are regarded as the output.
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ãr = �2��−1/2� dkeikrak. �2�

b̃r is defined similarly. As illustrated in Fig. 1, the r�0 and
r�0 regions correspond to the incoming and outgoing fields,
respectively.

Throughout this study, we consider the weak-coupling
case, characterized by ��g �22�. As will be shown in the
Appendix, the dynamics in this case is characterized solely
by the atomic decay rate 	, which is given by

	 = g2/� . �3�

B. State vector of input photons

In this study, we investigate the following situation: A
classical light pulse is input from the left-hand side of the
cavity �the r�0 region of ãr�, whereas no light pulse is input

from the right-hand side �the r�0 region of b̃r�, and photons
emitted in the reflection direction �the r�0 region of ãr� are
regarded as the output. The amplitude of the input pulse �at
the initial moment, 
=0� is denoted by �f�r�, where the in-
put mode function f�r� is normalized as �dr�f�r��2=1 and is
localized in the r�0 region, and ���2 represents the mean
photon number. The state vector of the input pulse is given
by

��in	 = N exp
�� drf�r�ãr
†��0	 , �4�

where N is the normalization constant, given by N
=exp�−���2 /2�. The input state vector can be expanded as

��in	 = N��0	 + ��1in	 + 2−1/2�2�2in	 + ¯� , �5�

where �nin	 is the n-photon Fock state for the mode function
f�r�, given by �nin	= �n!�−1/2��drf�r�ãr

†�n�0	.

C. State vector of output photons

The output state vector �at the final moment 
= t, where t
is a sufficiently long time� is given by ��out	=e−iHt��in	.
From the linearity of the quantum time evolution and the
photon number conservation in the present system, the out-
put state vector takes the same form as Eq. �5�,

��out	 = N��0	 + ��1out	 + 2−1/2�2�2out	 + ¯� . �6�

In the output state, both transmitted and reflected photons
exist. Therefore, �nout		 can be written as

�nout	 = �
j=0

n � d nr
g̃n;j�r1, . . . ,rn�
�j ! �n − j�!


ãr1

†
¯ ãrj

† b̃rj+1

†
¯ b̃rn

† �0	 ,

�7�

where g̃n;j�r1 , . . . ,rn� is the n-photon output wave function
with j reflected and n− j transmitted photons. Although the
time coordinate is not explicitly shown, g̃ denotes the wave
function at the final moment. The probability of j-photon
reflection for the n-photon input, hereafter denoted by pn;j, is
given by

pn;j =� d nr�g̃n;j�r1, . . . ,rn��2, �8�

namely, the norm of g̃n;j. The probability conservation law,
� j=0

n pn;j =1, holds since 
nout �nout	=1.

III. WAVE FUNCTION OF OUTPUT PHOTONS

A. Rules for construction of output wave functions

The n-photon output wave function g̃n;j can be obtained
through the correlation function in the output field �21�. In
the Appendix, the detailed calculation of g̃2;1 is presented for
example. The results can be summarized by the following

three rules: �i� g̃n;j�r1 , . . . ,rn�=�
nCj
ãr1

¯ ãrj
b̃rj+1

¯ b̃rn
	,

where 
ãr1
¯ ãrj

b̃rj+1
¯ b̃rn

	 is the lowest-order component of
the n-point correlation function in the output field. �ii� When

calculating the correlation function, b̃r can be replaced with
ãr− f�r− t�, where f�r� is the input mode function. Note that
f�r� is a c number, whereas ãr is an operator. �iii� 
ãr1

¯ ãrn
	

is a symmetric function of r1 , . . . ,rn by definition, and is

given, for r1
 ¯ 
rn, by f̃�rn�� j=1
n−1� f̃�rj�−e	�rj−rj+1� f̃�rj+1��,

where f̃�r��=g̃1;1�r�� is the wave function of the reflected
photon for the single-photon input, given by

f̃�r� = 	�
0

�

d�f�r − t + ��e−	�. �9�

B. Concrete forms of output wave functions

By following these rules, the n-photon output wave func-

tion g̃n;j can be expressed in terms of f�r� and f̃�r�. Here we
present concrete forms of the output wave functions, up to
the two-photon component. When the one-photon Fock state
�1in	 is input, the wave functions of the transmitted and re-
flected photons are given by

g̃1;0�r� = f̃�r� − f�r − t� , �10�

g̃1;1�r� = f̃�r� . �11�

When the two-photon Fock state �2in	 is input, the output
wave functions are given by

g̃2;0�r1,r2� = g̃1;0�r1�g̃1;0�r2� − e−	�r1−r2� f̃2�R� , �12�

g̃2;1�r1,r2�
�2

= g̃1;1�r1�g̃1;0�r2� − e−	�r1−r2� f̃2�R� , �13�

g̃2;2�r1,r2� = g̃1;1�r1�g̃1;1�r2� − e−	�r1−r2� f̃2�R� , �14�

where R=max�r1 ,r2�. The first and second terms on the
right-hand side of each equation represent the linear and non-
linear components, respectively.

These wave functions contain the full information of out-
put photons. The reflection and transmission probabilities
pn;j can be calculated by Eq. �8�. The photon statistics of the
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output pulse can be calculated by Eqs. �8� and �17�. The
intensity distribution of the output pulse can be calculated by
Eq. �20�.

IV. NUMERICAL RESULTS

A. Input mode function

To be more specific, we hereafter assume that the input
light is in resonance with the atom and has a Gaussian mode
function with pulse length d. Denoting the initial position of
the pulse by a �a�0 and �a��d�, the input mode function is
given by

f�r� = 
 2

�d2�1/4
exp�− 
 r − a

d
�2� . �15�

Then, from Eq. �9�, we obtain

f̃�r� = 
�d2	4

8
�1/4

exp
	�r − a − t� +
	2d2

4
�

�erfc
 r − a − t

d
+

	d

2
� , �16�

where the complementary error function is defined by
erfc�x�=2�−1/2�x

�d� exp�−�2�.

B. Transmission and reflection probabilities

The norms of g̃1;0 and g̃1;1 give the transmission and re-
flection probabilities, p1;0 and p1;1. In Fig. 2�a�, p1;0 and p1;1
are plotted as functions of the pulse length d. It is observed
that the reflection probability p1;1 increases monotonically as
d is increased, and approaches unity in the limit of d→�.

Thus, for efficient reflection of the single-photon component,
a long pulse is advantageous.

The norms of g̃2;0, g̃2;1, and g̃2;2 give the probabilities p2;0,
p2;1, and p2;2, which are shown in Fig. 2�b�; for reference, the
correspondent probabilities of the linear case, given by pn;j

L

= nCj�p1;0�n−j�p1;1� j, are also plotted by thin lines. pn;j agrees
well with pn;j

L in the small d region, in which most photons
cannot be absorbed by the atom and therefore the saturation
nonlinearity is weak. However, for larger d, pn;j deviates
from pn;j

L due to the increasing nonlinear effect. It is observed
that, in comparison with the linear case, the two-photon re-
flection probability p2;2 is suppressed, while the zero- and
one-photon reflection probabilities p2;0 and p2;1 increase,
demonstrating the photon blockade effect. p2;2 increases
monotonically as d is increased for two reasons: �1� the in-
crease of the linear reflectivity p1;1 and �2� weakness of the
blockade effect when the pulse length is large �23�. Thus, for
exclusion of the two-photon component in the output, a short
pulse is advantageous.

C. Photon statistics

The photon statistics of the output pulse is readily ob-
tained from pn;j. Here, the photon statistics is observed as a
function of the pulse length d and the input intensity ���2.
Since the n-photon probability of the input pulse ��in	 is
given by ���2ne−���2 /n!, the j-photon probability in the output
pulse is given by

Pj�d,�� = �
n=j

�

pn;j�d�
���2ne−���2

n!
. �17�

The photon statistics of the input and output pulses are plot-
ted in Fig. 3, where the input intensity ���2 is fixed at unity
and the pulse length d is chosen to be 0.5	−1 and 	−1. In the
input pulse �thin dotted line in Fig. 3�, the multiple-photon
probability Pm �=P2+ P3+¯� is comparable with the single-
photon probability P1 �Pm=0.26, P1=0.37�. In contrast, in
the output pulse, the multiple-photon probability Pm is dras-
tically suppressed, while the single-photon probability P1 is
almost unchanged. For example, when d=0.5	−1 �solid line
in Fig. 3�, Pm=0.01 and P1=0.32. As expected from Fig. 2,
the single-photon probability can be increased by using a
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FIG. 2. Plots of the transmission and/or reflection probabilities
as functions of the pulse length d; �a� one-photon input, �b� two-
photon input. pn;j represents the probability of j-photon reflection
for n-photon input. In �b�, the transmission and/or reflection prob-
abilities of the linear case are also plotted by thin lines for
reference.
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FIG. 3. Input and output photon statistics. The thin dotted line
plots the input photon statistics for ���2=1. �The input photon sta-
tistics is independent of d.� The solid and dashed lines show the
output photon statistics for d=0.5	−1 and 	−1, respectively.
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longer pulse, accompanied by an increase in the multiple-
photon probability. For example, when d=	−1 �dashed line
in Fig. 3�, Pm=0.04 and P1=0.40.

D. Intensity distribution

Since analytic forms of the output wave functions are
available, we can observe the spatial shape of the photon
pulse thus generated. For this purpose, we use the intensity
distribution I�r� of the output pulse, given by I�r�
= 
�out�ãr

†ãr��out	. Since the multiphoton probability is neg-
ligibly small, I�r� can be regarded as the intensity distribu-
tion of a single photon. Using Eq. �6�, we have

I�r� = I1�r� + I2�r� + ¯ , �18�

In�r� =
e−���2���2n

n!

nout�ãr

†ãr�nout	 . �19�

Namely, In�r� describes the intensity distribution of a single
photon that originates from �nin	. In terms of the output wave
function g̃n;j, after tracing out the variables r� for the trans-
mitted photons, In�r� is given by

In�r� =
e−���2���2n

n!
� dn−1r��g̃n;1�r,r1�, . . . ,rn−1� ��2. �20�

In Fig. 4�a�, the intensity distribution I�r� of the output pulse
is compared with that of the input, given by Iin�r�
= 
�in�ãr

†ãr��in	= ���2�f�r��2, for �=1 and d=0.5	−1. It is ob-
served that the output becomes much weaker than the input
��drIin�r�=1 whereas �drI�r�=0.32�, since a considerable
fraction of the input is filtered out by this optical system. It is
also observed that the output pulse is delayed in comparison
with the input, due to the absorption and emission by the

atom, which takes a time of the order of 	−1. In Fig.
4�b�, In�r� is plotted for n=1, 2, and 3. By evaluating
�drIn�r� /�drI�r�, it is confirmed that a generated single pho-
ton originates from �1in	 by 51%, �2in	 by 35%, and �3in	 by
12%. After normalization, it is also confirmed that I1�r�,
I2�r�, and I3�r� have similar spatial shapes. The delay of I1�r�
is slightly larger than those of I2�r� and I3�r�, since the delay
mechanism �absorption and emission by the atom� per pho-
ton decreases when multiple photons are involved in the dy-
namics.

V. SUMMARY

In summary, we have investigated the nonlinear dynamics
of a classical photon pulse in a photon blockade system. As a
photon blockade system, a two-sided cavity containing a
two-level atom is considered; the photons emitted in the re-
flection direction are regarded as the output �Fig. 1�. The
wave functions of the transmitted and reflected photons are
obtained analytically. Using these output wave functions, the
transmission and/or reflection probabilities �Fig. 2�, output
photon statistics �Fig. 3�, and spatial shape of the output
pulse �Fig. 4� are observed. It is demonstrated that a cavity-
QED system can function as a single-photon filter. When the
mean photon number is unity, the single-photon probability
P1 and the multiple-photon probability Pm are comparable in
the input �P1=0.37 and Pm=0.26�. After transmission
through the filter, the multiple-photon probability is drasti-
cally suppressed whereas the multiple-photon probability is
nearly unchanged �when the pulse length d=0.5	−1, P1
=0.32, and Pm=0.01�. Such a single-photon filter would be
useful for secure and efficient information processing.
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APPENDIX: CALCULATION OF OUTPUT
WAVE FUNCTION

1. Heisenberg equations

From the Hamiltonian of Eq. �1�, the Heisenberg equation
for ak is given by

d

d

ak = − ikak − i��/2�c . �A1�

Denoting the initial and final moments by 0 and t, the opera-
tor at time 
 �0�
� t� is represented in two ways,

ak�
� = ak�0�e−ik
 − i��/2��
0




d
�c�
��e−ik�
−
��, �A2�
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FIG. 4. �a� Intensity distributions of the input pulse �dotted line�
and the output pulse �solid line�, observed from a coordinate system
moving at light velocity. The input pulse is characterized by �=1
and d=0.5	−1. �b� Plots of I1�r� �solid line�, I2�r� �dashed line�, and
I3�r� �dotted line�. I�r� is plotted by a thin line for reference.
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ak�
� = ak�t�e−ik�
−t� + i��/2��



t

d
�c�
��e−ik�
−
��.

�A3�

Using Eq. �2� and the above two forms of ak�
�, ã0�
� is
recast into the following two forms:

ã0�
� = ã−
�0� − i��/2c�
� , �A4�

ã0�
� = ãt−
�t� + i��/2c�
� . �A5�

Equating the right-hand sides and introducing a new label
r�=t−
�, we obtain the input-output relation, as given by

ãr�t� = ãr−t�0� − i��c�t − r� , �A6�

where 0�r� t. Thus, the output field operator at time t is
expressed in terms of the input field operator at the initial
moment and the cavity-mode operator at t−r. Similarly, the

input-output relation for b̃r is given by

b̃r�t� = b̃r−t�0� − i��c�t − r� . �A7�

The Heisenberg equations for the atomic operator � and the
cavity-mode operator c are derived from the Hamiltonian of

Eq. �1�. Using Eq. �A4� and its counterpart for b̃0�
�, they are
recast into the following forms:

d

d

� = − ig�1 − 2�†��c , �A8�

d

d

c = − �c − ig� − i���ã−
�0� + b̃−
�0�� . �A9�

Throughout this study, a weak coupling case ���g� is con-
sidered. In this case, Eq. �A9� can be solved adiabatically.
The cavity operator is given by

c = − i�g/��� − i�−1/2�ã−
�0� + b̃−
�0�� . �A10�

Substituting Eq. �A10� into Eqs. �A6�–�A8�, we obtain the
following equations:

ãr�t� = − b̃r−t�0� − �	��t − r� , �A11�

b̃r�t� = − ãr−t�0� − �	��t − r� , �A12�

d

d

� = − 	� − �	�1 − 2�†���ã−
�0� + b̃−
�0�� , �A13�

where 	 is the atomic decay rate, defined by Eq. �3�. These
are the basic equations for calculation of the correlation
function in the output field.

2. Relation between the output wave function
and the correlation function

Here, we investigate the relation between the output
wave function and the n-point correlation function.
The n-point correlation function is defined by


�out�ãr1
¯ ãrj

b̃rj+1
¯ b̃rn

��out	. We denote the lowest-order
component of this correlation function, which is proportional

to �n, by 
ãr1
¯ ãrj

b̃rj+1
¯ b̃rn

	. From Eqs. �6� and �7�, the
following equations can be confirmed:


ãr1
¯ ãrj

b̃rj+1
¯ b̃rn

	 =

0�ãr1

¯ ãrj
b̃rj+1

¯ b̃rn
�nout	

�n!
,

�A14�

g̃n;j�r1, . . . ,rn� =

0�ãr1

¯ ãrj
b̃rj+1

¯ b̃rn
�nout	

�j ! �n − j�!
. �A15�

Combining Eqs. �A14� and �A15�, we obtain

g̃n;j�r1, . . . ,rn� = �
nCj
ãr1

¯ ãrj
b̃rj+1

¯ b̃rn
	 . �A16�

This is the first rule presented in Sec. III A.

3. Calculation of the correlation function

Next, we proceed to calculate the correlation function in
the lowest order. For example, we consider the two-point

correlation function 
ãr1
b̃r2

	. In order to calculate the corre-
lation function, it is convenient to work in the Heisenberg
representation. Namely, we use the output field operators
given by Eqs. �A11� and �A12�, and the initial state vector

given by Eq. �4�. Then, 
ãr1
b̃r2

	 is recast into the following
form:


ãr1
b̃r2

	 = ��	f�r2 − t�
��t − r1�	 + 	
��t − r���t − R�	 ,

�A17�

where r=min�r1 ,r2� and R=max�r1 ,r2�. The following two
facts should be remarked in derivation of the above equation:

�i� the input-field operators ãr�0� and b̃r�0� commute with
��t� if r+ t�0, and �ii� the input-field operators can be re-

placed with c numbers �ãr�0�→�f�r� and b̃r�0�→0� since
the input state vector ��in	 is an eigenstate of the input-field
operators. Equation �A17� demonstrates that the field corre-

lation function 
ãr1
b̃r2

	 is composed of the input mode func-
tion, f�r�, and the atomic correlation functions, 
��
�	 and

��
���
��	.

The atomic correlation function can be calculated by us-
ing Eqs. �4� and �A13�. The equation of motion for 
��t�	 is
given by

d

d


�	 = − 	
�	 − ��	f�− 
� . �A18�

Note that the third-order term has been removed in the above
equation, since we are concerned with only the linear com-
ponent. By integrating Eq. �A18�, we obtain


��
�	 = −
�

�	
f̃�t − 
� , �A19�

where f̃ is defined in Eq. �9�.
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From Eqs. �4� and �A13�, the equation of motion for

��
���
��	 for 
�
� is given by

d

d


��
���
��	 = − 	
��
���
��	 − ��	f�− 
�
��
��	 .

�A20�

Note that the fourth-order term has been removed. The solu-
tion of Eq. �A20�, satisfying the initial condition of

��
����
��	=0, is given by


��
���
��	 = 
��
�	
��
��	 − 
��
��	2e−	�
−
��.

�A21�

Combining Eqs. �A16�, �A17�, �A19�, and �A21�, and remov-
ing the perturbation coefficient �2, we finally obtain

g̃2;1�r1,r2�
�2

= f̃�r1�� f̃�r2� − f�r2 − t�� − e−	�r1−r2� f̃2�R� .

�A22�

Thus, Eq. �13� is reproduced. Extension to general g̃n;j is
straightforward. The results can be summarized by the three
rules presented in Sec. III A.
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