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Relation between conventional and dynamical formalisms in the quantum Zeno effect
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The measurement-modified decay rate is calculated in two distinct formalisms, i.e., the conventional for-
malism and the dynamical formalism. The relation between the two formalisms is clarified, by recasting the
decay rates obtained by the two formalisms into a unified form. It is shown that the dynamical formalism
reproduces the conventional results only under the condition that the apparatus detects the decayed states with
an identical response time.
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I. INTRODUCTION quired for explanation of the Zeno effect. The aim of this
) ) study is to bring a transparency to the relation between these
It was theoretically predicted that frequent measurementg, 5 “formalisms. In Secs. Il and IV we calculate the

on an unstable quantum state would suppress the decay gfeasyrement-modified decay rafésandI'y based on the
that state, which is known as the quantum Zeno eflR@E)  onyentional and dynamical formalisms, respectively. It is
[1]. Later, it was pointed out that the opposite effect—gpown that, under the condition that the response time of the
acceleration of decay—may_ sometimes be caqsed by freapparatus is identical for every decay prodiett responsge
quent measurements, which is known as the anti-Zeno effegge gynamical formalism reproduces the conventional re-
(AZE) [2-5]. The experimental observations of the QZE gjts "However, the conventional formalism cannot handle
were restricted to oscillating quantum systems in the early, e general measurements, where the response time is not
days[6], but, recently, both the QZE and AZE were successyecessarily identical for every decay product; the dynamical

fully observed using an irreversibly decaying systeBl.  formalism is indispensable for analysis of such general mea-
Besides academic interest, practical applications of repeateq, ements.

measurements are also propog&e-11], which make this
research field more attractive.

In the theoretical analysis of the QZE and AZE, there are Il. THEORETICAL MODEL
two distinct formalisms. In one formalism, measurements are
simply described by the projection postulate, assuming that AS an example of an unstable quantum state, we employ
instantaneous and ideal measurements are repeatedly p@f €xcited atom undergoing radiative decay. It should be
formed on the target system. Thus, the dynamics of the targééMarked, however, that the model presented below is appli-
system is calculated by combining the unitary dynamics Opable to'other un_stable systems. The Hamiltonian of the sys-
the system and the projective operations at every instant ¢M Is given, takingi=c=1, by
measurement. Originally, the QZE was predicted based on
this formalism[1], which is called theconventionalformal- N
ism in this study. In the other formalism, in order to discuss Hs=Qoy0- +J dk[(gkosby + H.c) + ebby], (1)
the effects of measurements, one explicitly considers the in-

teraction between the target quantum system and the mea;

a . . .
surement apparatus, and examines the unitary dynamics XMhereQ Is the atomic transition energly,denotes the wave

; , ector of an emitted photorg, is the energy of a photon in
the enlarged quantum system including the apparatu%‘.nodek, andg, is the atom-photon coupling. Here, the cre-

[12-15. The changes in dynamics induced by the system- . . o

apparatus interaction are interpreted as the measurement lon operat$ rs for atqm|c exmtatpn and photons are denoted
fects in this formalism. This formalism is referred to as thea{o;;cagfctigtiroe:gi(g“éi%h?)for):wcl)s;[;/n%}trlﬁevzf;[gr?/esgg?of
dynamicalformalism in this study. The dynamical formal- the initial unstable state is given Hj=o-|0). The form

ism, which is particularly suitable for analysis of continuousf tor of the atom-photon interaction is extracted from E
measurements, has also been widely used in the analysis P a-

the QZE and AZE. ) as
Regarding the relations between these two formalisms, it
has been revealed that the conventional results are reproduc- 19,/2= | dKlgd28(e, - ) )
ible by the dynamical formalisifil2,13, which emphasizes 9ul”= Ok~ o€ = p)-
the fact that the projection postulate is not necessarily re-

Based on this model, we calculate the measurement-modified
decay rate of an excited atom in the conventional manner in
*Electronic address: ikuzak@aria.mp.es.osaka-u.ac.jp Sec. lll, and in the dynamical manner in Sec. IV.
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Ill. MEASUREMENT-MODIFIED DECAY RATE BY P(7) = 7t exp(- 7). 9)

CONVENTIONAL FORMALISM _ . .
. . _In this casef(u) is reduced to a Lorentzian:
In this section, we calculate the measurement-modified

decay rate based on the conventional formalism, i.e., by f _ 27 10
combining the free-decay dynamics determinedHyand calb) = lw-Q+ir P (10

the projection postulate. In conventional theories on the QZE "

and AZE, it is often assumed that measurements are repeated |\, \\= A s UREMENT-MODIFIED DECAY RATE BY
periodically with a definite time interval. Here,. we treat a DYNAMICAL EORMALISM

more general case, where the measurement interisla

stochastic variable with a probability dens®y7). The prob- In the previous section, the measurement-modified decay
ability density is normalized afd7 P(7)=1. The mean inter- rate is calculated in the conventional formalism. In this sec-
val is hereafter denoted by, [=/d7 7P(7)]. tion, we discuss the measurement-modified decay rate using

When the measurement intervals take the values ofhe dynamical formalism, taking account of the system-
(71,7, ...,my), the survival probability after th&ith mea- apparatus interaction explicitly. Regarding a concrete type of

surement is given b)H}\‘:lS(Tj), wheres(t) is the survival ~Mmeasurement for atomic decay, we here assume a photode-
probability of an excited atom in free evolution, i.e(f)  tection measurement. The interaction between photons and

=|(i|e""<i)|2. Here, we have neglected the revival prob(,;lb"_the_detector is described by the following interaction Hamil-

ity, which is usually extremely small in irreversible processeston'an'

such as atomic decay. The averaged decay rate is given by
Heg= f f dk dw[{(277) 0}cy,, + H.C} + wCl, Crol.
N
In T, s(7)

Fe==\ —<v — /> () (11

2T . o _
=1 wherec,, is the annihilation operator for the excitation in the

where(- -y means the average over a probability distributiondetector with the total momentutk and energyw. In the
P(7). Using the law of large numbe(§}\'_1¢j ~Nr, for large  K-conserved form of the photon-detector interaction, it is im-

N) in the denominator, we can obtain a simplified form of theplicitly assumed that the detector is spatially homogeneous

averaged decay rate: [1_7]. By this photo_n-detector inFeraction, an emitted photon
with wave vectok is detected with a response timg A set
T(m) == 7, XIn s(7)), (4)  of response time$r,} characterizes the performance of the
detector.

In the usual discussions of the QZE and AZE, becatsis
taken to be very small, only the short-time behavios(®f is
relevant. The short-time survival probability can be evalu-
ated by the perturbation theory as

By analyzing the unitary time evolution determined by the
enlarged Hamiltonian H +H.q, oOne can obtain the
measurement-modified decay rate. It has been proved that,
due to the photon-detector interaction Hamiltonfdgy, the

bare form factor given by Eq2) is renormalized to take the
s(t)=1 —tZJ dulg,|sind (- Q2] (5)  following form [14,15:
. -2 . . . — 12 2 (27TTk)_l
when sincx=x"? sin x. Substituting Eq(5) into Eq. (4), we 9,°= [ dklgy| - - (12
can obtain a more transparent formIaf 7,,): = &=i(2m) 7

The measurement-modified decay rhtgis given, applying

T'o(7y) :f dM|gM|2fC(M), (6) the Fermi golden rule to the renormalized form factor, by
-1
o [T 2= 2 Tk
() = 7_;11<72 sin[(u - )12, ) Tq({7}) = 27(gq f dk|gy| Q= e —i(2n) P
where the decay rate is determined by integrating the form 13
factor with a weight functiorf(u) [4]. Although the above This is a general result, which is applicable to any forms of
formula is simple and compact, it is known that the formula|g,|?, ¢, and 7.
covers most theoretical predictions on the Zeno effect, such Now we apply the above formula to an idealized situation
as the QZE-AZE crossovéb]. of flat response, where every photon is detected with an iden-

Let us see two concrete forms df(u). First, when tical response time;, namely,
P(7)=48(7—7y,), namely, when measurements are repeated
periodically, f.(«) reduces to the well-known foria]

T = Ty (14)

) regardless ok [12,13. In this case, the decay rate is recast
fea(e) = 7 SINCY (1 = ) 7/2].. ®  into the following form:

Second, we consider a case wheres a y(1)-variate[16]
andP(7) is given by Ly(7) = f dpelg,*fa(w), (15)
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7}_1 complete_ agreement is attained by regardipg 27, when
C0-i@n (16)  P(7) is given by Eq.(9).
K r It should be stressed that equivalence between the two
where the decay rate is, again, calculated by integrating théormalisms is guaranteed only under the condition of flat
form factor with a weight functiorf4(u). response, Eq14). One might wonder why this condition is
required. This question is resolved by inspecting the effect of
the projection operation on the state vector of the system. By
V. DISCUSSION applying the projection postulate, the quantum coherences
between the undecayed stdte,|0)) and the decayed states

In Sec. lll, the measurement-mpdlfled deca_y ﬂbﬁt(em).'s (bl|0>) are lost simultaneously, regardless lof Therefore,
calculated based on the conventional formalism, taking ac;

"t of stochasticity in the m rement intervals. The fin he flat response is implicitly assumed in the conventional
count of stochasticity € measureme ervais. ihe ormalism. For direct measurements, where the unstable sys-
form of I'«(7,) is given by Egs.(6) and (7). On the other

! M tem is directly touched by the measurement apparatus, the
hand, in Sec. IV, the measurement-modified decaylfgte)  condition of flat response is satisfied in most cases, so analy-

is calculated based on the dynamical formalism. After impoSses py the conventional formalism are validated. However,
ing the flat-response conditiofiy(7) is reduced to Eqe15)  the condition of flat response is not necessarily satisfied in
and(16). Now the close connection between the two formal-general measurement processes, particularly in indirect ones.
isms is revealed. Botl'(r,) and I'y(7;) are recast into a Therefore, it is expected that the general formula based on
unified form, wherel’ is given by integrating the original the dynamical formalism, Eq13), may contain phenomena
form factor|g,|> with a weight functionf (). Furthermore, peyond the conventional wisdom on the QZE and AZE. For
the weight functionsf.(x) and fy(x) have the following example, let us consider a case where the unobserved decay
common propertiedi) f(u) is a positive function centered at law exactly follows an exponential orsét)=e™", which is

Q) (atomic transition frequengywith a spectral width accomplished when the form factor is a constant function as
roughly given byr.! or 7%, and (i) f(x) is normalized as |g,|?= /2. In this case, as is well known, the conventional
Jdu f(w)=27. These common properties suggest that theheory predicts that neither the QZE nor the AZE can be
conventional theories on the QZE and AZE can be reproinduced. Actually, Eqs(6) and (7) necessarily predict that
duced by the dynamical formalism, at least qualitatively, prothe decay rate is unchanged from the unobserved(bpe
vided that the condition of flat response is satisfied. The only=1y), regardless oP(7). However, even in this case, it has
difference lies in the functional forms df(u) and fy(x),  been demonstrated based on the dynamical formalism that
which would result in slight quantitative discrepancy. How- the QZE or AZE may take place when the condition of flat
ever, the two results may agree even at a quantitative level iresponse is not satisfig¢d4,15, which is a normal situation
some cases. For example, E¢R)) and (16) indicate that a in real experiments.

fo(w) = |
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