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Analytic approach to the optical response of one-dimensional photonic crystal slabs
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We investigate the optical response of one-dimensional photonic crystal slabs for an incident wave from free
space. The Maxwell equation is solved in an analytic manner using the eigenmodes for the empty lattice case
(without periodic gratings and compact formulas for transmittivity of the incident wave and excitation effi-
ciency of waveguide modes are obtained. These formal results are visualized at certain parameters. The effect
of width in the wave vector of incident wave is also discussed.
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[. INTRODUCTION analytically is the coupled-mode theori€s#In these theo-
ries, the main concern is laid in the energy exchange among

By comparison of Maxwell and Schiinger equations, it several waveguide modes, and the interaction between the
is known that regions with large dielectric constant for elec-waveguide mode and the radiation modes is not treated rig-
tromagnetic wave correspond to regions with low potentialorously. Apparently, such theories are not suitable to discuss
for particles! Thus, a plain slab of dielectric supports two the optical response of PCS'’s to the EM wave incident from
kinds of eigenmodes(i) waveguide modes, which are spa- the z direction, because the incident wave belongs to the
tially bound in the normal direction to the sldtwhich we  radiation modes. Recently, Ochiti al. have treated the cou-
hereafter call the direction almost within the thickness of pling v between the waveguide and radiation modes by
the slab, andii) radiation modes, which extend infinitely in perturbatiorf, and derived nonphenomenological expressions
the z direction. In the case of a plain slab structure, there idor the energy and radiative width of the waveguide modes.
no coupling between waveguide modes and radiation modeslowever, as a result of perturbative treatment, the theory
so the existence of waveguide modes does not affect theannot describe the nonperturbative quantitieg,irsuch as
incident wave from the direction. the transmissivity of the incident wave and the amplitudes of
Due to recent progress of fabricating nanostructures, wéhe waveguide modes excited by the incident wave.
are able to prepare such artificial slabs whose dielectric con- In this study, we discuss the optical response of PCS by
stant is periodically modulated in one or two directionsshowing the analytic solution of the Maxwell equation,
within the plane of the slab, which are called photonic crystaWwhich has a nonperturbative form in the coupling constant
slabs(PCS.27% In this system, contrary to a plain dielectric In order to obtain the solution, we utilize the fact that the
slab, the in-plane wave vector is not conserved, because iphotonic modes in the PCS can be regarded as a typical
finitesimal translation symmetry in the in-plane directions isexample of a Fano-type problem, which is characterized by
lost by the variance of the dielectric constant. Instead, théhe linear coupling between discrete levéise waveguide
periodic modulation introduces the coupling between theamodes that are folded back into the light cone by periodic
modes satisfying the Bragg’s condition. This mechanism engratings and continugradiation modes and employ an ap-
ables the externally incident wave from tkedirection to  proximation by taking into account only those modes that are
interact with those waveguide modes that are folded backlmost resonant to the incident wave. In particular, we dem-
into the light coné, which brings unique optical features to onstrate the solution in the simplest situation, where the fre-
the PCS's. quency of the incident wave is low enough so that it is not
One of the typical consequences of the coupling to theliffracted into other radiation modes, and therefore only a
waveguide modes is the appearance of sharp dips in th&ngle continuum of radiation modes should be taken into
transmission spectrum of the incident wave fromzftirec-  account. The solution clearly reveals the underlying mecha-
tion. This has been observed experimenfalignd also has nism for how the structural and dielectric parameters of the
been reproduced by solving the Maxwell equation in a nuPCS are reflected in the optical response. We also show how
merical manne? ! By using such numerical methods, one the optical response of an ideal PCS is altered in realistic
can obtain numerical values of many quantiigansmissiv-  cases.
ity, spatial distribution of EM field, and so orwith high The composition of this paper is as follows: in Sec. Il, the
accuracy. However, the underlying physical mechanisms arstructure of the PCS considered in this study is described. In
buried in the huge processes in numerical calculations. It iSec. Ill, the Maxwell equation is solved for incidence of
impossible to see transparently the dependence of thesefinite plane wave. After decomposing the electric field by
physical quantities on the structural and dielectric parametersigenmodes for the empty lattice case, the equation is treated
of the PCS, and, therefore, to give compact guidelines foms a Fano-type problefwith two discrete levels and a con-
designing the PCS’s. Thus, analytic approaches are desirgghuum, which allows analytic solution of the Maxwell equa-

where physical quantities are given as functions of the pation. The formal results are visualized with numerical ex-

rameters of the PCS. amples. In Sec. IV, we discuss the effect of finite width in the
A well-known approach to handling the waveguide modesn-plane wave vector of incident wave, which is inevitable in
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z As for the incident electromagnetic wave, we consider a situ-
ation where the wave vectoP(0,Q) of the incident wave

€a lies on thex-z plane and there is no field variation in tle

A direction.P andQ are related to the wave numbi€rand the

v incident angle® by P=Ksin® and Q=K cos0. In this

X case, the field is separated into TE and TM modes. We dis-

By cuss the TE-polarized case in the following.

IIl. SOLUTION FOR INFINITE PLANE WAVE INCIDENCE

o A. Eigenmode expansion
incident wave *

. . In this section, we solve the Maxwell equation with the
FIG. 1. Section of the system on tikez plane. The system is  gielectric function €;(x) + €,(x,2), for incidence of TE-
gmform in they direction (perpend|c_ular to pap}arThe incident polarized infinite plane wave with wave vectd?,0,Q). In
light has its wave vectorR,0Q) and is TE polarized. TE-polarized cases, electromagnetic field is completely de-

. o . scribed by they component of the electric field, which we
real experimental situations. The results are summarized iHenote byE(x,Z) in the following; x andz components of the

Sec. V. magnetic field are given bB,=i(cK) 19,E(x,z) and B,
=—i(cK) '9,E(x,z). The fundamental equation to solve is
Il. SYSTEM the Maxwell equation foE(x,z):
The structure of the PCS that we discuss in this study is P
described in this section. The system is composed of a plain [dy+ 95+ K e1(2) + ex(x,2)} JE(X,2) =0. (6)

slab of transparent dielectriclielectric constante), incor-

porated with a one-dimensional array of stripes of differentn order to solve Eq(6), we use the eigenmodes for the

dielectric (dielectric constante,), as sketched in Fig. 1. empty lattice case, i.e€y(X,z) =0, which are easily acces-
We decompose the dielectric function into two parts asSible due to one-dimensionality. The eigenmodes are divided

€(X,2) = €,(2) + €5(X,2). €,(2) is the dielectric function of as follows:

the slab without periodicity in thg direction, which is given

by L~ Y2%ePXf ) o0(2), 7
est(ea—edalA  (|z]<dl2) where L is the quantization length, and a real function
€,(2)=1 € (di2<|zl<l) (1) foqs(2) satisfies the following equation:
1 1<]|z)),
d=<lzh [+ (P24 ) (D~ P2 =0, ()

whered anda are the thickness and width of the stripAsis
the periodicity of the arrays, arlds half of the thickness of and is normalized by
the slab. On the other hané,(x,z) denotes periodic modu-

lation of the dielectric function, which is given by L/2
f dZEl(Z)qug(Z)quro.r(Z):5qq750.0.r . (9)
[(ea— e[ X(x)—alA] (|z]<d/2) L2
€5(X,2)=
0 (dr2<|z)), As is well known, the eigenmodes for the empty lattice case

are classified into radiation modes and waveguide modes.

The radiation modes have three independent ind€s

component of the wave vec)oq (z component of the wave

1 (Ix|<al2) . vector, ou@tiidg of thellsla,balf”ndoh(parity for Fgez dirdectionci

o=@ or ©). Contrarily, as for the waveguide modesan

0 (al2<|x|<A/2). o are automatically determined as functionspofWe shall

The reason for this particular decomposition is to lettherefore omit the indiceg and o for the waveguide modes
A2 dxe,(x,z) be zero for later convenience. For simplic- in the following. o _ _

ity, we substitute the step function with widthat z=0 by a We expand the electric field by the eigenmode functions

delta functionds(z), and employ the following forms of @s

€,(2) and e5(x,2);1°

whereX(x) is a periodic function ok with period A, which
is given, for|x|<a/2, by

X(x)=[

et (e—€9(alN)dd(z) (|Z)<I) E(X,Z)=p§”quaL’l’zeiprpqa(z), (10)
61(2)— 1 (|<|Z|), (4)
which leads to the following equations among the coeffi-
€(X,2)= (€5~ €[ X(X)—al/A]d5(z). (5) cients:

165213-2



ANALYTIC APPROACH TO THE OPTICAL RESPONS.. .. PHYSICAL REVIEW B 67, 165213(2003

: k : interaction, and using the following abbreviated notations,
radiation modes b.=1"Dp. g, by=(L2m)YDpge, f.=1"%p.s(0), fq
N d = (L/2m)**f 54 (0), andK . (the frequencies of waveguide
: modesbp. s, see Fig. 2 we get the following homoge-
Mag, | K P neous equations:
N - (Q2—q))by+mifKA(fib, +f b )=0, (13
WG modes /
PG P PG P (K2—K2+)b++v2f+f,K2b,+vlf+IK2J dgfgbg=0,
0
FIG. 2. Energy of eigenmodes for a plain slab, plotted against (14

(x component of the wave vecjorContinuum of radiation modes

(gray region lie inside the light cone, while the branches of wave- 5 9 5 5[~ _
guide modes(curves are outside of it. In this study, radiation (KE=KZ)b_+wof f_K b, + v f_IK fo dqfqbq_o'
modes withp=P (thick line) and a pair of waveguide modes with (15)

=P+ i
p=P=xG (dotg are taken into account. If one wants to extend the theory to larger wave number

region, other modes should be taken into account addition-
(K2=p2—q?)b,g, + K2 vifoan(O)Fpsicrarger(0) &Y. For ~example, for (1r3|n_®)_/co§<K/G<_(1
P4 Pa q”u—%(q&o) 1pd (pric)a +sin®)/cog®, the continuum of radiation modes with
=P —G should also be considered.

XE(D+]G)Q’O”:0' (11)
whereG=2m/A, j runs over nonzero integers, anglis a C. Forms of b and by
dimensionless coupling constant defined by After the simplified treatment described in the previous
sin(j malA) subsection, the problem has been reduced to coupled linear
b= (e ed(dl) n(Jj: _ (12  equations13), (14), and(15). From Eq.(13), we get
f 1
Because the incorporated materials are locateri=Q, the quleZ(f+b++f,b,) +q P(T + nﬁ(q—Q)},
interaction takes place only among the even parity modes g+Ql 19-Q 16
(=), and those with odd parity remain eigenmodes even
in existence of the periodic modulatian(x,z). where P means taking the principal part on integration,zand
is a dimensionless constant to be determined in the follow-
B. Treatment as Fano problem ing. Substituting Eq(16) into Egs.(14) and (15), we get

simultaneous equations fob( ,b_). From the condition
that the equations have nonzero solutions tor (b_), we
tain

Now it is apparent from Eq(11) that the incident wave
(p=P) is coupled only to those modes with+jG. It
should be stressed here that the incident wave can interac
with the waveguide modes through this mechanism, which ., s

J, 9

1
results in distinct dips in the transmission spectrum. In this P(—
study, we restrict ourselves to the simplest case where theo a9-Q
wave number of the incident wave is small and diffraction o Lo o 2 202 02 1,4
into other radiation modepE&P+G,P+2G, .. .) does not __ (KKK KD)—95f4 1K
occur. The condition is expressed by € G)2>P?+Q? or, VAKA(F2 +2 —20,f2 f2)K2— 2 K2 - f2K2 ]’
in terms ofK and ®, K/G<(1-sin®)/cos0. In this low 1
frequency region, the relevant modes are the continuum of (17)
radiation modeﬁpqe; with p=P (thick line in Fig. 2, and a andb. /b_ is given by
pair of waveguide mode®,.c belonging to the lowest 2\2 w2
branch(two dots in Fig. 2. It should be remarked again that b_+: fi[(1—wpf2)K —KZ]
the waveguide modes have only one ingteafter fixing th5e bo f_[(1-v,f2)K2-K2]
branch. Thus, we treat this problem as a Fano-type-®one . . .
with two discrete states and one continuum. The crucial in7 is determined through E417). On evaluation of left-hand
teractions ardi) those betweeibpy, andbp. ¢ (character- side of Eq.(17), we SUbSt't;Jtefq in the integrand byfq,
ized by »,), which couple the incident wave to waveguide N€9lecting itsg dependencé’ Then 7 is immediately given
modes and also give radiative widths to the Waveguidc,by
modes, andii) those betwee. ¢ andbp_g (character- 22 W2 262 2 4
ized by v,), which is important because these two wave- _ _ 2Q[(K"—K5)(KT—KZ) — vpf5 2K '
guide modes are energetically degenerate for a normal inci- VAIKAFE[ (5 + 12 — 20,12 12)K2— K2 — 2 K3 ]
dence @ =0). Taking into account these two kinds of (19

dg

+n&q—Q4

(18)

165213-3



KAZUKI KOSHINO PHYSICAL REVIEW B 67, 165213(2003

i(Px+Qz) T T T i T T
Ae 80| i} (a) a/A=0.5 ]

112 i(P+G)x

R.e foe!

[ 1 [ 1

iP-G)x n
e( )

R £, 1

A

e Px+Qz) B ei(Px-Q z)

[

FIG. 3. Summary of the solution for incidence of infinite plane
wave. The amplitudes, B, andR-. are given in Eqs(23), (24), and
(25). fp+g(2) is a function almost confined in the thickness of the
slab.

It should be remarked thdt. , K., andf, are dependent 40 4

upon P. Thus » and b, /b_ are given as functions of the ]

incident wave vector R,0,Q), or, equivalently, K,0). If 80 1:

the incorporated material is dispersivg, may also depend | Bt . . ]
on K through the dielectric constaaf(K). 0.66  0.68 0.7 072 074

K/IG

FIG. 4. Plot of (K) at incident angle®=0° (solid curve,
®=1° (broken curvg, and® =2° (dotted curveé The parameters
Using Egs.(10), (16), and (A1), the even-parity solution are chosen as follows¢s=2, €,=10, d/1=0.02, A/I=1, and

D. Amplitudes of the transmitted wave, reflected wave, and
excited waveguide modes

of Eqg. (6) outside of the slab is given by alA=0.51in(a) and 0.75 in(b).
2 o0 . . .
Eron (X,2)= v(fib,+f b )K eiPXJ' dq fq B=isin(0pos — Opgo+ p)eilfratlpoetd)  (24)
(wl)¥2 o 9g+Q
2\mQb. e'free
X| Pl —& |+ 78(q—Q) [cogq|z|+ Opqe), (25

4-Q ST l(f by + b ) fKA(—im)

(20)
) ) i ) , whereb, /b_, n, and¢ are defined in Eq9418), (19), and
where 0p e is a p_hase shift assomate_d with the_elg_enmode§22)_ Thus we have obtained analytic formsAfB, andR..
for the empty lattice casésee Appendix A Substitutingf as functions of P,Q) or (K,®), using the quantitie.. ,

andfpqg in the integrand b andfpqs , EQ.(20) leads at - ¢ fo, andfpge o, Which are associated with the eigen-

|2] —ee: modes for the empty lattice cagsee Appendix A It should
be noted that the solution has a nonperturbative form in the
2 2\ 1/2 2
Epou(x.2)=| " ) rafeby +Tb )oK coupling constants, ,.
PQaL ™ L 2Q
X eP*coqQ|z|+ Opge + @), (21 E. Numerical examples
where ¢ (0< ¢=<) is defined by In the preceding subsections, we have derived a formal
solution of the Maxwell equatio6), which is summarized
p=cos Y gl n*+ 7). (22 in Fig. 3 with Egs.(23), (24), and(25). Now we visualize the

N o ) results at fixed parametefsee caption of Fig. ¥as functions
Thus, an additional phase shift is introduced in the even- of (K, @).

parity solution. In order to satisfy the boundary condition
that there is no wave propagating in the,Q,— Q) direction
in 1<z, an odd-parity solutionEpqsxL ™ Y%"*fpos(2) _ o
should be superposed on the even-parity soluEigg . First, we show th& dependence of; at severa in Fig.
The result is summarized in Fig. 3. For incidence of infi-4. The parametea/A is set to 0.5 in Fig. @) and 0.75 in
nite p|ane wave Ofei(Px+QZ), the amp"tudes(inc|uding 4(b), respectively. The qualitative difference between them is
phasesof the transmitted wave, reflected wave, and excitedhat the parameter, (coupling constant between two wave-
waveguide modes are given, respectively, by guide modesbp, and bp_g) is zero fora/A=0.5 and
nonzero fora/ A =0.75. The following rewriting ofy from
A=c0S Opge — Opgo+ ¢)e(PPoot et d) - (23)  Eq. (19 is helpful for understanding Fig. 4:

1. K dependence ofp
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(a) a/A=0.5
| 6=0° . 0.76

[4
i \ | o 0.04 0.08 0.12
R
. . \ .
066 068 07 072 074 _ : - :
K/G FIG. 6. Plot of the regions whergy| <2 is satisfied, which

can be interpreted as energy bands of waveguide modes. The width

_— corresponds to the radiative width of the waveguide modes.
FIG. 5. Transmission spectruim(K) at®=0°,1° and 2°. The

same parameters are used as in Fig. 4. . .
other hand, in the case af A=0.75[see Fig. ®)], a nar-

row dip appears &, besides a wide dip df,. As expected
K2 +K?2 - : :
+ TR from Fig. 4b) and the fact thatAK is proportional to
2 |d#/dK| 2, the width of the wider dip is almost independent
of ®, but the width of the narrower one is sensitive @
(proportional to sif®).
: (26) Comparison of rigorous numerical restft&® is carried
out in Appendix B. We have confirmed there that the analyti-
cal results agree well with the numerical ones KIIG < (1

cos®

= —5———| —(L+ v, fHK?+
V2K 3212 (vt

7

. (K2 —K?)%/4
(1— v, fA)K2— (K2 +K?2)/2

wheref . are approximated by thi€-independent constaht  —sin®)/cog0.
K. are dependent oK for ® #0, but they are approximated  The regions satisfyingn| <2 are plotted on theR,K)
by K.=G/\es+tGsin®/e for small incident angle®. plane in Fig. 6. These regions can be interpreted as energy

Then it is easily understood that the first and second terms ibands of waveguide modes, which acquired finite width by
the bracket of Eq(26) is almost insensitive t®, while the  coupling to radiation modes. There is no energy gap at
third one is proportional to st®. Thus, for®#0, the third =0 for a/A=0.5 (v,=0), while a finite gap appears for
term is superposed to the curve @r=0 (solid curves in  a/A=0.75 (v,#0); it is easily confirmed from Eq19) that

Fig. 4. the gap is proportional tdv,|. Dips in the transmittivity
appear at the intersections of the energy band and the line
2. Transmittivity T=|A|? P=K sin®.

Next, we proceed to discuss the transmittivity= |A|2,
which is plotted in Fig. 5. As indicated by Eqg2) and(23), 3. Excitation efficiency R. of waveguide modes
the dips in the transmission spectrum are formed where Finally, we discuss the excitation efficien®s of wave-
7(K) changes sign. Denoting the solutions ¢fK)=0 by  guide modes. The absolute value and the phasB.ofare
Ky andK; (K1<K3), the dips locate around; andK,, and  shown in Figs. 7. Fo® =0 (solid curves in Figs. 7 R, is
their ~widths are roughly evaluated byAK;)  equal toR_, as expected from the symmetiR.| has a
=2W|d7]/dK|EiK1(2)y which is roughly proportional ta?. single peak at the dip energy in the transmittivity, accompa-
For® =0, there appears a single wide dip, irrespective ofnying gradual change of the phase ty
a/A=0.5 or 0.75. The qualitative difference between the two R, (broken curvesandR_ (dotted curvesare no more
cases becomes clear f@r#0. In case ob/A=0.5[see Fig. equal for®#0. Interestingly,R, ) becomes zero aK
5(a)], the dip splits into two dips of the same width. On the =K _,,/y1—v,, which is reflected in the dips iiR..| (due
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' ' wave with cosGx (sinGx) type is excited atk,;). The
(a) a/A=0.5 phases oR. change byr around both peaks; the change is
gradual atk, and abrupt aK. This difference is related to
the stability of the excited waves against the widthHn
which will be discussed in the next section.

4. Comment on the case of/a <0.5

We briefly comment on the cases @fA <0.5, wherev,
takes a positive value. In this case, a widarrow dip ap-
pears aK(,) in the transmission spectrum, where the stand-
ing wave of co$Gx (sinGX) type is excited. This implies that
the standing wave of cdsx type has lower energy than the
sinGx type, contrary to the cases afA>0.5. This is be-
cause the coSx type covers the region of larger dielectric
constant more effectively than the €x type [compare
JdxX(x)coSGx and f dx X(x)sinPGx].°

IV. EFFECT OF WIDTH IN P

In the previous section, we discussed the optical response
of a PCS for plane wave incidence. However, in real situa-
tions, the finite width is introduced iR (x component in the
wave vectoy by several reasons such as finiteness of the
periodic structure in the direction, disorder in the periodic
structure, and so on. In this section, we discuss the effect of
finite width AP, introduced by the finiteness of the diameter
of the incident wave for example.

We employ the following form for the incident wave,
which has a finite diametdt in the x direction:

E(i)(X,Z):W(X)ei(POX+QZ) (27)
= J dpw(p—Pg)e(P**Q2, (28)

e wherew(x) is a normalized (w?(x)dx=1) Gaussian with

= width Ax=W/2, andw(p—Py) is its Fourier transform.

% They are given, respectively, by

Tgl I I l' | 8 v —(2xIW)?

© : i W(X)= W e (29

S o ! ]

! and
066 068 0.7 072 074 2\ L4 ,
K/G w(p—Pg)= 373 e~ [W(p—Pg)/4]~. (30)

FIG. 7. Absolute values and phases®f(=R_) at ®=0° Thus, w(p—Py) is also a Gaussian with width P= 4/,
(solid curve, R, at® =2° (broken curvg andR_ at® =2° (dot- and is normalized b)fdpwz(p— P0)=(27T)71.
ted curve. a/A is 0.5 in(a), and 0.75 in(b). As shown in Eq(28), the incident wave is the superposi-
tion of plane waves. The transmitted wali® (x,z) and the

to logarithmic plo} and also in the discontinuous jumps by oy cited waveguide mode&*) are therefore given by

in the phases.R, and R_ are out of phase between
K_/Jy1-v, andK,/\{1—v,, and are in phase outside. In

the case od/A=0.5, |R, ()| has a single peak &, and

is almost zero aKy,. This implies that the propagating and
wave withp=P+G (P—G) is excited aK ;). Contrarily,
in the case o/ A=0.75, |R.| have peaks at botK =K (+) (0 G)x

andK,. As is observed in Fig.(B), R, andR_ are in phase  E (X*Z):f dpw(p—Po)R.(p,Q)e"P= = cog w2/2l).
at K; and out of phase d,. This implies that the standing (32

EO(x,2)= f dpw(p—Pg)A(p,Q)e P Q2 (31

165213-6



ANALYTIC APPROACH TO THE OPTICAL RESPONS.. .. PHYSICAL REVIEW B 67, 165213 (2003

V. SUMMARY

We have considered the optical response of a one-
dimensional PCS, which has a structure sketched in Fig. 1. In
the low frequency region where diffraction of the incident
wave into other radiation modes does not occur, the Maxwell
equation(6) has been reduced to a Fano-type problem with
one continuum(radiation modes witlp=P) and two dis-
crete state$waveguide modes with=P = G), as described
in Fig. 2. The solution for a plane wave incidence is summa-
rized in Fig. 3 with Eqs(23), (24), and(25). The transmit-
tivity T=|A|? and the amplitude of the excited waveguide
modesR.. are plotted in Figs. 5 and 7 as functions of the

] incident angle® and the wave numbeK of the incident
: , , wave. We have also discussed the effect of finite widtP in
0.66  0.68 07 072 074 (x component of the incident wave vectowhich is inevi-
K/G table in real experimental situations. It is demonstrated that
the sharp dips in the transmittivity spectrum expected in the

FIG. 8. Effect of AP in (a) transmittivity T and (b) |R, |, for infinite plane wave case become dullerf&B increases.
a/A=0.75 and®=1°. The solid(dotted curve corresponds to
W=100A (W=wx) case.
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?=2wf dpw?(p—Po)|A(p,Q)|?, (33

APPENDIX A: FORMS OF F,(2)

i.e., averaging the transmittivity of the plane wave case with In this appendix, we discuss the forms f%fQU-(Z) which

probability density 2TW2(p__,P0)' Numerical examples are gqtisfy Eqs.(8) and (9). Equation(8) is equivalent to the

shown in Figs. &), where it is demonstrated that sharp dips 5cnrodinger equation for a one-dimensional particle in quan-

observed in the plane wave case become shallower, whigh,n well. Bound solutionsq?< 0) correspond to waveguide

reproduces the e_xpgrlmen_ta_l spectriifls. ) modes, while unbound oneg{>0) correspond to radiation
As for the excitation efficiency of waveguide modes, we ,04es. As for the radiation modetyqe(2) and fyee(2)

employ the ratid?i of the amplitude of the waveguide mode have the following forms:
to that of the incident wave, at=z=0. It is given by
2
quEB(Z): EX

Apgecosalzl+6,q.)  (1ZI<1),

- cogq|Z[+ Opqe) (I1<z]),
R.=(8/mW?) f dpw(p—Po)R+(p,Q), (34
2 [Apgesin(az) (Izl<n),
R Bee@=NTY 212)s +0 |<
which reduces tdR. in the limit of W—o. |R, | is plotted (Zl|z)sin(alz]+ Opee)  ( |Z|)&A2)

as an example in Figs.(I®. For AP=0, sharp and wide
peaks appear & =K; andK,, respectively. ASAP is in- ~>_,  ay2 2 L
creased, while the wide peak is not altered significantly, th%/vhereq |_(6r? Lp~+ €d - Theddelta fl;]ncrt]lon |ns|1(z; af-
sharp peak become smaller, indicating the fragilityAtB. ects only the even-parity modes, W Ich resu t‘cf Eqﬂa
This can be understood by considering the phase,0f As = arctaieda(p®+q?)/2Aq]. The amplitudesq. o inside
observed in Figs. (b), the phase oR, is sensitive to P,Q)  the slab and the phase shiffy. o are determined by the
aroundK ; but not so sensitive arourtt,. Thus, the excited continuity condition off and df at z==I. For example,
waves interfere destructively &, in Eq.(34) if AP iscon-  Apqe is given by A2 . =[cos(ql+ fpqe)+(0/0)sir’(ql
siderably large. +0pq0)]

165213-7
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Ly e — T andl, g?(<0) is determined as a function pf andf,(0) is
j: : determined after normalization.
0.8f ] !
! APPENDIX B: COMPARISON TO RIGOROUS
0.6¢ i NUMERICAL RESULTS
= i In this appendix, we compare the analytic results of this
04r :' study to the rigorous numerical results obtained by the
\ S-matrix based methdd.As an example, we plot in Fig. 9
0.2r ' the transmissivitiesT calculated by the numerical method
E i (solid curve and by the analytic results in this stu@tyroken
0o o088 102 curve. The vertical dotted lines showK/G=(1

K/G —sin®)/cogO and (1+sin®)/cosO.
In the energy region dk/G< (1—sin®)/co$0, in which
FIG. 9. Comparison of the transmissivities: the rigorous numeri-'€gion the analytic results in this study are applicalsiee
cal result(solid curve and the analytic resulioroken curve The  Sec. lll B), the rigorous numerical results are well described
vertical dotted lines showK/G=(1-sin®)/cof® and (1 by the formula(23), except for the slight energy shift in the
+sin®)/cog ©. The parameters are chosenas 1, €,=5, d/A waveguide mode. This shift originates in the off-resonant
=0.02, a/A=0.75, and the incident angl®=2°. In K/G<(1 coupling between the waveguide mode<P— G) and the
—sin®)/cog O, the two results are in good agreement, while in continuum =P+ G), which is neglected in our treatment.
K/G>(1-sin®)/cog O, deviation due to diffraction to another This shift becomes less significant ag-1 becomes larger,
radiation modes appears. where the energy of the waveguide modes becomes lower.
On the other hand, INK/G>(1-sin®)/cos® [(1
As for the waveguide modes belonging to the lowest™ si_n@)/co§®], the incident wave couples resonantly to the
branch, their parity is even regardlesspofThe mode func- radiation modes wittpp=P—G [P+G]. Then diffraction
tion is proportional to cos{z+#') inside the slab, and to Into t.hpse mers occeurs, which results IN CUSPS In thg trans-
. . missivity obtained by rigorous numerical methddolid
exd —|ql|Z] outside of the slab.(If p is larger than I der t this effect in th i
— JedA(e—T)+ JeJA(e—1)F 2ed Aleda, the mode curve. In order to encompass this effect in the analytic

S TS T ) ] ~ } method, inclusion of continua of radiation modes wjth
function inside the slab is proportional to cogh+¢),  =p+G is necessary, which is a straightforward extension of

whereq’=\—q?) From the boundary condition @=0 the present study.
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