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Quantum Zeno and anti-Zeno effects by indirect measurement with finite errors
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We study the quantum Zeno effect and the anti-Zeno effect in the case of “indirect” measurements, where
a measuring apparatus does not act directly on an unstable system, for a realistic model with finite errors in the
measurement. A general and simple formula for the decay rate of the unstable system under measurement is
derived. In the case of a Lorentzian form factor, we calculate the full time evolutions of the decay rate, the
response of the measuring apparatus, and the probability of errors in the measurement. It is shown that not only
the response time but also the detection efficiency plays a crucial role. We present the prescription for observ-
ing the quantum Zeno and anti-Zeno effects, as well as the prescriptions for avoiding or calibrating these
effects in general experiments.
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It was predicted in a classic pagdr] that repeated mea- straightforward. For example, it did not clarify the conditions
surements on a quantum unstable system, at time intervale observeaccelerationof the decay by measurements, the
Tm, Suppress the decay of the system for smgl—the so-  anti-Zeno effec{AZE), which has also been attracting much
called quantum Zeno effe¢@QZE). It was assumed there that attention[9,11,13. To apply real experiments on QZE and
each measurement is completely ideal, i.e., it takes only aAZE, more realistic models should be analyzed. Such analy-
infinitesimal time, there is no error in the measurement, andis should also be important generalexperiments, because
the postmeasurement state is exactly given by the projectiofhe QZE or the AZE might slip in results of experiments not
postulate. However, any physical experiments do not satisfesigned to detect it. The purpose of this paper is to present
all of these assumptions; hence more careful studies havgtheory that satisfies all these requirements, using a realistic
been desired. model of an indirect measurement with finite errors.

According to the general measurement theory, not only The total system in our model is composed of three parts:
the unstable system in question but also a part of the megy) 5 ynstable two-level system, which is initially in the
suring apparatus should be treated as a quantum system S iie g statex) with the transition energ, to the ground
ject to the.Schrdmger equat|or{2_—6]. It was clarified by state|g), (i) a field whose eigenmodes are labeled by a
such theories that the response timeof the apparatus cor- wave vectork with any dimension, a quantum of which is

responds tor,, of Ref.[1]. However, effects of the errors in j)mitted by the unstable system when it decay$gto and

iii) a measuring apparatus that detects the emitted quantum

by a finite response time, but also by the detection effi- by absorbing it, from that gn_observer gets to know the decay
ciency 1-¢., (i.e., the apparatus occasionally fails to detectOf the unstable system_. Similar model_s of measurement have
the decay even after an infinitely long waiting tim&lore- been fre_quently u_sed in quantum OPtICS, where the unstable
over, these pioneering theories, as well as pioneering experfyStém is an excited atom that emits a photon upon decay,
ments[7-9], studied the case of “direct” measurements, and the photon is detected by a photodetector such as a pho-
where the apparatus acts directly on the unstable systef@multiplier. Therefore, we hereafter cal), (i), and(iii) as
(e.g., shines laser light to excited atom such a case, an atom, photon, and detector, respectively, although the
however, the dynamics of the unstable system would be atheory is applicable to other systems as well. In this model,
fected by the apparatus even if the unstable system were reither a projection operator nor the interaction Hamiltonian
classical system, and thus the Zeno effect in direct measuref the detector acts on the atom. Moreover, the measurement
ments might not be peculiar to quantum systems. Hence, thie of negative-result type, where no signal is detected until
most interesting case of “indirect” measurements is yet to behe atom decays: The QZE or the AZE occurs just by waiting
explored, where the apparatus does not act directly on thir the decay.
unstable system, but detects a signal mediated by some field. The role of a detector is to convert a photon into other
A promising theory of an indirect measurement was develkinds of elementary excitations, which finally yield macro-
oped by Schulmafl10]. However, since his model was an scopic signals after magnification processes, usually obeying
abstract one, application to real physical systems is notlassical mechanics. As a model of the relevant part of the
detector, we assume elementary excitatiéeg., electron-
hole pairg with a continuous spectrum, into which photons
*Electronic address: koshino@ASone.c.u-tokyo.ac.jp are converted. By taking the energy |gf zero, the Hamil-
TElectronic address: shmz@ASone.c.u-tokyo.ac.jp tonian of the system is taken as follovisith 2=1);

the measurement are yet to be explored, because the pro
ability ¢ of getting an erroneous result is determined not onl
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H=Q|X)(X|+H1+ Hoz, 1)

o= [ oK@ (albtHe) +ablbd. @

HZZI fdkdw[(gkwblckw—’_H'C')_Fwclwckw]' (3)

Here,by is the annihilation operator for a photon with energy
€, andg, represents the atom-photon coupling. The photoni
dispersion relation can be nonlineas¢|k|) as in, say, pho-
tonic crystals. Every photon mode is linearly coupled to
continuum of bosoni¢13] elementary excitations, denoted
by ¢, , in the detector, with the coupling constaRj, . The
commutation relations are orthonormalized Eisk,bl,]

= §(k—k") and[cy,, ,cl,w,]: S(k—=k")é(w—w"). The life-
time 7, of a photon is determined k¥, . We will show later

that n,=7,, the response time of the detector. In most ex-
periments, the detector does not cover the whole solid ang|

C
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T : 7 BT 1— '
so thatB, is Qrthqnormallzed a$BM,BH,]—5(,u—,u ).
Then, the Hamiltonian finally reduces to

H=QolX){(X| + Hy + Ha, (6)

Hy= f dul(g,x)(glB,+Hc)+uBB,],  (7)
whereH, consists of coupled modes which do not interact
with the atom. Now the physical meaning Bf, becomes
apparent; it is part of the coupled modes with enexgthat
interact with the atom, whereas the other part is isolated. In

Serms of such operators, the Hamiltonian is expressed in the

renormalized form, Eqs(6) and (7), where the atom is
coupled to a single continuum &, with a coupling con-

stantg,,, which is called the form factor of interaction. The
form factor under measurement is determined by &,
from €, gx, and z,. It should be noted that there exists a

sum rule [du[g,|?=[dk|gy|?, which holds for any func-

around the atom. When a photon is emitted in the uncoverefional forms of 7.

direction, it cannot be detected and has a long lifetime. As

We first estimatd™ under the measurement by a lowest-

we will demonstrate later, we can encompass such realistierder perturbation iy, . To do this, it is essential to use the

situations by allowingk-dependence ofr,. We here put
{ko= V7« [14], which results inr,= (277, . Equations
(1)—(3) already suggest that modification of the decay fate
may occur through the effect of “cavity quantum electrody-
namics”[15]. Our task is to study' as a function of relevant

guantities in the measurement, such as the response time an

the measurement error.

It is essential to include strong effects of the detector. We,

therefore, diagonalize the photon-detector pafit;+ H,, us-
ing the coupled-mode operatdi6], which, in this case,
is given by

Byu= ax(u)by+ fdowBi(u,w)cy,,,

where ay(p) =\ (n—ectimn) and Bi(u, o) = n/(u
—etimny)(u—w+id)+ (u—w). The commutation re-

lations for By, is given by[BkM,BE,M,]=5(k—k’)5(w
—w'). Inversely, b is expressed in terms d,, as by
=[du ag (u1)By, . The HamiltonianH can then be rewrit-
ten as

H:90|x><x|+f JddeBE#Bk#

+f Jdkd,u[ T

——————x)(g|By,+H.c.
We further rewrite, usinggﬂ andgﬁ that are defined by

M € iy

— V 7k 2

2_ _ Ve
19 Jdk m—€—imy @
— 1 vV 17k
B,=— | dk——— Ku s (5)
a 9y p—e—imy

renormalized formH,, rather than,, as the interaction
term. We then obtain a simple formula

Mgk z

Qo—e—imy|’

®

r=2w|§go|2:2wj dk‘
Wﬂich should be compared with the free decay rate,

Io= zwf dk|gu?8(Qo— €y).

Note that Eq(8) includes nonperturbative effects gf. The
formula clearly shows that the most important effect of the
measurement i.e., of finite »,) is to renormalize the form

factorg,, , and that the QZEor the AZE occurs through the
renormalization. Note that the formula is general, which
holds for any forms of,, g., and »,, and for any dimen-
sion ofk. It is applicable, not only to spontaneous decay of
an atom, but also to many other unstable systems if their
Hamiltonian can be approximated by Eqd)—(3) [13].
Moreover, the formula is also applicable to the case where
the detector does not cover the full solid angle, yielding the
detection efficiency<1.In fact, suppose that only photons
which are emitted in some solid ang®; in the three-
dimensional space are coupled to the detector,#e=0 for
(0,9) ¢Sy, where k=(ksinfcosg,ksinésindgpkcosé).
Then, Eq.(8) yields the simple formula

r=2wfk2dkf d% Y
SeSd QO

—e—imTny
+2’7Tf kzdkf dagk|26(00_fk)!
SéSy

(€)

whered S=d cosédd.
Now we embody the above general results in an example
in three dimensions, in whicii) »=»=(2#77)"! for
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(6,0) €Sy, whereasn,=0 for (6,¢) ¢Sy, (i) e.=k (we !
takec=1), and(iii) g, takes the Lorentzian form after the o8l 1t |
angular integration; ’ () T B
g 06 e 0]
2 5o 88007 (1= 6. YT (K—kp)+ A7, S/
F | [
A o2l F 7 t-.-""“"'"-------------=
< f s5,90K2= 6. YA (K~ ko) 2+ A7), A
00 = 0.‘2 0.I4 0.I6 0.‘8 1
whereky>A. In a case wherg, depends only ork, ¢, is t (unit: v
simply given bye,,=1—|Sy|/47. In general cases, however,
€., depends on botlsy andgy. It will turn out that 1—¢.. FIG. 1. The decay probability 2s(t) (solid curvg, the prob-

corresponds to the detection efficiency, i.e., the probability ohbility of getting an erroneous resui(t) (broken curvg and the
errors approaches,, ast—o. The meanings ofy and A probability of getting a detector respondg) (dotted curvg when
become transparent fd2y=Kk, i.e., when the atomic tran- Qo—ko=0, A=100y, =2y, ande..=0.2.

sition energy coincides with the center of the Lorentzian. For . - ,
Ay, the decay rate of the atom is given by-2, while the response timer, of the detector. The probabilities finally

transition from the initial quadratic decrease to the exponen@PProaches the asymptotic values; (t)—1, e(t) —e.,

tial decrease in the survival probability occurs tat 7 andr(t)elgsm. | behavi learl
=2/A, which is called the “jump time’[10,12. Using Eq. To see the temporal behavior s(t) more clearly, we

_1 . . . .
(9), the renormalized lowest-order decay rate is evaluated a22V€ plotiedt “In(f) as a function of time in Fig. 2, for
several different values of the parameters. At the beginning

< 2 of the decay (=7;), t ling(t) decreases linearly as
2my(17e)A8 | 2mye AT L) a0 tHns(=—(dgHi=—myAt, for any values ofQ,
(Qo—ko)2+A%  (Qg—kg)2+A? Y — ko and for any values of the detector parametgende., .
Then, for t=7, t~lins(t) approaches a constant value,
whereA = A + 7. This indicates that the effect of measure- which is well approximated byl'(7,&.) (dotted lines.
ment on the decay dynamics become significant only forThese plots demonstrate that the decay dynamics is well de-
large 7 satisfying n=A, i.e., sz(zwn)—lsz 7., in ac-  scribed, except for the initial deviation, by the exponential
cordance with the pervious studigs10]. decay with the renormalized lowest-order decay rate. In fact,
To see what is going on, we now calculate the temporaive can show analytically that formuld0) is a good ap-
evolution of the wave function from the initial state,0,0). ~ proximation to the asymptotic decay rate j#<|Qo—ko
This can be pursued analytically for the Lorentzian form fac-+iA[?/A.
tor. By putting |¥(t))=e ""x,0,0)=f(t)|x,0,0) 0
+ [dkf i (t)]g,k,0)+ [ fdk dwf,,(t)]|g,0ke), we calculate ' ' ' C)
three probabilitiess(t) =|f(t)|? (survival probability of the k 1
atom), e(t)=fdk|f(t)|? (probability that the atom has de-
cayed but the emitted photon is not absorbed by the detec-
tor), andr (t)=f fdk dw|f,,(t)|? (probability that the emit-
ted photon is absorbeéd Assuming fast classical
magnification processes, we can interpr@f) as the prob-
ability of getting a detector response, whereds) is the
probability that the detector reports an erroneous result.
One of the advantages of the present theory is that all
of these interesting quantites can be calculated. For
example, s(t) is given by S(t)=4m?|cppe 1t
+Cpz€ 2 g%, where ¢ is  given by
Cijk = YA[(A—e.77) (0 —ko) ® + (A + e.m7) AA][ (;
— o) (0~ o)) (0~ 0F) (0~ ) (0—of)] and
w; (j=1,2,3) are the solutions of the cubic equation,
(0= Qo) (0 —koF+iA)(wj—ko+iA) = myAlw,—ky+i(A : : : :
+ejwm;)]. JFigure 1 plo'ts 1 s(t),e(t),r(t) for n=27y. o o t?jnit-%) 04 05
At the initial time stagdt<7=(2m#5) 1], &(t) increases )
almost in parallel with +s(t), and the detection probability FIG. 2. Plots oft YIns(t). A=100y ande..=0.2 in both fig-
r(t)[=1—s(t)—e(t)] remains almost zero. Arountr 7, ures.Qq—k, is taken 0 €A) in (a), and 206/ (>A) in (b). The
the emitted photon is gradually absorbed aift) starts to  dotted lines show the renormalized lowest-order decay rate,
rise. Hence, the photon lifetime can be regarded as the Eg. (10).

t'Ins(t) (unit:y)

t-'Ins(t) (unit:v)
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3 : : . . . on the dotted line, which is given by
2 (M =[]0~ ko| — AT/ 13
7™ =[]Qo—ko| A/ (13
g
= 1
I We find that#® and »(™ do not depend og., .
We finally discuss the significance of our results, for ex-
00 periments on the QZE or the AZE, and fgeneralexperi-

ments. As mentioned earlier, indirect measurements are nec-
|€29-Ko /A essary, which have not been performed yet, for the complete
) experimental verification of the QZE and AZE. For such ex-
FIG. 3. The phase diagram for the QZE and the AZE for a case,oriments, formula8) gives the necessary conditioh: of
of Lorentzian form factor(valid for anye.,). The solid curve di- Eq. (8) should significantly differ from the free decay rate

vides the QZE region and the AZE region. The dotted line showsf In the Lorentzian case, this can be decomposed into the
the value ofy at which the decay rate is maximized for each Valuefocil.owing conditions: (i) 7 éhould be short enough =< r
. r T~ ]

f | Qo—Kol. L . .
of 120~k (which is a well-known conditiop (i) » should not be close

There is a remarkable difference between Figs) and  (© the phase boundail), and(iii) e.. should be so small
2(b), where different values df2o— ko|/A are employed. In that the first term of Eq(10) becomes dominant. Moreover,
case of|Q,—ko|//A=0 [see Fig. 2)], the decay rate de- the QZE or the AZE should be chosen according to the phase
creases monotonously by increasingi.e., the QZE occurs dlag_ram, Fig. 3; e.9,, the AZ.E IS most detect_able on the dot-
at any value ofy. Contrarily, in case ofQ2g— ko|/A =2 [Fig. ted line. On the o_ther hand, in general experiments, one usu-
2(b)], the decay is enhanced for small(=30y), while it is ally wants toavoid the QZE and the AZE in order to get

_ correct results. Considering recent rapid progress of experi-
suppressed for large (=200y). Thus, the AZE takes place ) . . :
for small . By analyzing Eq.(10) as a function of|Qq mental techniques and diversification of experimental ob-

N : o jects, we expect that the QZE or the AZE would slip in
th gokggdig, t:r? eFr):tiZe \(,jvﬁg(]::]ag S'ﬁ' C(J:Vr\;:]nlirr:alt:l?g gheTﬁgE k? ; Sdéesults of advanced experiments not designed to detect it. To
boundary(sglid curve is given by g 2 P avoid the QZE and the AZE, one must design the experimen-

tal setup to break at least one of the above conditions.For
7P =[(Qg—ko)2— A%/ 7A, (11) examp!e, when performing an experiment with a high time
resolution such that,<;, then Egs.(9) and(10) suggest
on which the decay rate is not altered from the free fafe  thate., should beincreased 17]. If ¢, cannot be increased

while the decay rate takes the maximum value, to keep the sensitivity of such high-speed measurement, then
one should adjust parameters in such a way that(EL.is
I(p™e.) 1 [ Qo—kol®+4A% satisfied, or, one should calibrate the observed value using
Ty =ext(1-es) 2A|Q ko ’ our results, such as Eq®) and(10), to obtain the free decay
(12 rate.
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